数学纪闻录

黑天蛮王

首页 >> 数学纪闻录 >> 数学纪闻录最新章节(目录)
大家在看阳光满溢快穿小炮灰在疯批癖好上疯狂踩点谁与争锋应龙和李莲花的修炼之行贵女穿知青,我和退伍军官结婚了女穿男七零爱上女配后我做了赘婿无敌了:我捡到一个加速空间夜先生,选择了白月光,就别后悔霍格沃兹:这个华夏学生不对劲系统要我救世我反手加入特殊部门
数学纪闻录 黑天蛮王 - 数学纪闻录全文阅读 - 数学纪闻录txt下载 - 数学纪闻录最新章节 - 好看的其他类型小说

第90章 变分法问题深入剖析

上一章目录下一章阅读记录

由此,我们可推导出如下结论:

1. 若构造二阶常微分方程(1)的任意一个单参数积分曲线族,再建立一个同样以这些积分曲线为解的一阶常微分方程:

(略)

则函数(原文未明确函数符号,此处按上下文保留“函数”表述)必然是一阶偏微分方程(1*)的一个解;

2. 反之,若(略)表示一阶偏微分方程(1*)的任意一个解,则一阶常微分方程(2)的所有非奇异积分,同时也是二阶常微分方程(1)的积分。

简而言之,若(略)是二阶微分方程(1)的一个一阶积分,则(略)是偏微分方程(1*)的一个解;反之亦然[第39页]。因此,二阶常微分方程的积分曲线,同时也是一阶偏微分方程(1*)的特征线。

在当前情形下,我们可通过简单计算得到相同结论:计算后,我们所讨论的微分方程(1)与(1*)可表示为如下形式(略),其中下标表示对(略)的偏导数。由此,上述关系的正确性便显而易见。

前文推导且刚刚证明的“二阶常微分方程(1)与一阶偏微分方程(1*)之间的密切联系”,在我看来,对变分法具有根本性意义。因为,由“积分(略)与积分路径无关”这一事实可推出:

(略)

若将等式左侧积分视为沿任意路径(略)的积分,右侧积分视为沿微分方程(略)的积分曲线(略)的积分。

借助方程(3),我们可得到魏尔斯特拉斯公式:

(略)

其中(略)表示魏尔斯特拉斯表达式,该表达式依赖于(略)。

因此,由于求解过程仅需找到一个“在我们所研究的积分曲线(略)的某邻域内单值且连续”的积分(略),上述推导无需引入二阶变分,仅通过对微分方程(1)应用极线法[第40页],就能直接得到雅可比条件的表达式,并回答“雅可比条件与魏尔斯特拉斯条件(略)相结合,在多大程度上是取得最小值的必要且充分条件”这一问题。

上述推导无需额外计算,即可推广到“存在两个或更多待求函数”的情形,也可推广到“积分是二重积分或多重积分”的情形。例如,考虑在给定区域(略)上的二重积分:

(略)

在通常意义下,其一阶变分(略)等于零,可得到关于两个变量(原文未明确变量符号,此处按上下文保留“两个变量”表述)与(略)的待求函数(略)所满足的着名二阶微分方程:

(略)

另一方面,我们考虑积分(原文未明确积分符号,此处按上下文保留“积分”表述,标注为积分J):

(略)

并探究:应如何将(略)与(略)确定为关于(略)、(略)与(略)的函数,才能使积分J的值与“通过给定闭扭曲线的曲面选择”无关——即与关于变量(略)和(略)的函数(略)的选择无关。

积分J具有如下形式[第41页]:

(略)

而在“问题新表述”所要求的意义下,一阶变分(略)等于零,可得到方程:

(略)

即关于三个变量(略)、(略)与(略)的函数(略)和(略),需满足一阶微分方程:

(略)

若在该微分方程之外,再补充由方程(略)推导得到的偏微分方程(略):

(略)

则“关于两个变量(略)与(略)的函数(略)所满足的偏微分方程(I)”,与“关于三个变量(略)、(略)与(略)的两个函数(略述)和(留白)所满足的两个一阶偏微分方程构成的方程组(标注为方程组(I*))”,它们之间的关系,与“单积分情形下微分方程(1)与(1*)之间的关系”完全类似。

由“积分J与积分曲面(原文未明确曲面符号,此处按上下文保留“积分曲面”表述)的选择无关”这一事实可推出:

(原文未写出推导式,此处按上下文保留空白)

若将等式右侧积分视为沿偏微分方程(原文未明确方程符号,此处按上下文保留“偏微分方程”表述)的积分曲面(原文未明确曲面符号,此处按上下文保留“积分曲面”表述)的积分[第42页];借助该公式,我们可立即得到公式(略):

(略)

该公式在“二重积分变分”中的作用,与前文给出的公式(4)在“单积分”中的作用相同。借助该公式,我们现在可回答“雅可比条件与魏尔斯特拉斯条件(原文未明确条件符号,此处按上下文保留“魏尔斯特拉斯条件”表述)相结合,在多大程度上是取得最小值的必要且充分条件”这一问题。

上述推导与A.克内泽尔(A. Kneser)[53]从其他视角出发对魏尔斯特拉斯理论的修正表述密切相关。魏尔斯特拉斯在推导极值的充分条件时,采用了“通过固定点的方程(1)的积分曲线”;而克内泽尔则反过来,利用任意一个“由这类积分曲线构成的单参数族”,并为每个这样的曲线族构造了“某偏微分方程的一个特征解”——该偏微分方程可视为雅可比-哈密顿方程的推广。

前文提及的这些问题仅是众多数学问题的范例,但足以表明当今数学科学的内容何其丰富、多样且广博。由此引发我们思考:数学是否会重蹈其他学科的覆辙——分裂成一个个独立分支,各分支研究者彼此难以理解,分支间的联系也愈发松散?我既不相信会出现这种情况,也不希望如此。在我看来,数学科学是一个不可分割的整体,如同一个有机体,其生命力依赖于各部分之间的紧密联系。

尽管数学知识纷繁多样,但我们仍能清晰地察觉到其中逻辑方法的相似性、数学整体思想的关联性,以及不同分支间大量的类比关系。我们还会发现,一门数学理论的发展越深入,其结构就越和谐统一,而此前相互独立的数学分支之间,也会逐渐显现出意想不到的关联。因此,随着数学的不断拓展,其有机整体性不仅不会消失,反而会愈发清晰地展现出来[第43页]。

但有人会问:随着数学知识的不断扩展,单个研究者最终是否必然无法掌握这门学科的所有分支?对此,我想指出一点:数学科学有一个根深蒂固的特点——每一次真正的进步,都会伴随着更敏锐工具的发明与更简洁方法的提出,而这些工具与方法,又能帮助我们理解过往的理论,并摒弃陈旧复杂的推导过程。因此,研究者只要掌握了这些更敏锐的工具与更简洁的方法,就能比在其他任何学科中更轻松地穿梭于数学的各个分支。

数学的有机统一性植根于其学科本质——因为数学是所有自然现象精确知识的基础。愿新世纪能为数学带来富有天赋的大师,以及众多热忱执着的追随者,让数学得以圆满完成这一崇高使命[第44页]。

请大家记得我们的网站:品书中文(m.pinshuzw.com)数学纪闻录更新速度全网最快。

上一章目录下一章存书签
站内强推陈二傻的美丽生活落河三千星私欲:江湖往事梦想为王医路青云霸魏我的盗墓生涯沙漏逆行岁月法师乔安四合院:生那么多孩子!怪我咯诸界之深渊恶魔异世界开发手册什么?!教主大人也重生了?帝国崛起三国之龙战八方今夜来港生子当如孙仲谋主宰江山重生娇妻已上线吞天圣帝
经典收藏无限流:救世主他撂挑子不干了她是一池春水小少爷追夫攻略脑叶公司:逐渐离谱的员工我,AI蛮荒神尊秦老六的生活日常凡人闯仙界后妈恶毒后妈爽,后妈日子过得好我的万事屋从漫威开始九叔:从献祭女鬼开始修炼武道沈氏家族奥特次元:羁绊之力美人祭职业魅魔,青梅校花不放过边水往事同人:野狗女王萌妻:总裁的黑心莲明日方舟:构史学主演穿越乱世,我有空间我怕谁陀地暗影:灵界的纠葛
最近更新少白:天幕,我?白月光!被妹妹坑成顶流之后终极宇宙:从铁时空奶团开始他从灰烬中归来长寿的真相风起青萍,蜜糖正甜绿萍重生,断腿的人变成了楚濂!神医赘婿是满级大佬道具师:小世界旅行手记斩神:开局无量空处,我吊打外神下放被烧死的资本家大小姐重生了【垂涎】学长,你跑不掉的躺平也能当神医诸天起源之开局火影平凡苟活她把禽兽养父送进监狱后善念觉醒:我的功德系统少将军,今日份暗杀请查收总裁的指尖星光:直播情缘超神:逢魔时王,审判诸神
数学纪闻录 黑天蛮王 - 数学纪闻录txt下载 - 数学纪闻录最新章节 - 数学纪闻录全文阅读 - 好看的其他类型小说